Aravinda Chakravarti

Principal Investigator

Google Scholar Profile

My laboratory focuses on the development and applications of molecular genetic, genomic and computational methods for identification of human disease genes through “genetic dissection”. We use a variety of disease models to infer the features of complex disease gene architecture in birth defects (Hirschsprung disease), cardiovascular disorders (hypertension, sudden cardiac death) and mental illness (autism, bipolar disease, schizophrenia).

Common human diseases, be they birth defects, diabetes, cardiovascular disease, infectious disease, psychiatric illness or neurodegenerative disease, are familial and arise from a combination of genetic and environmental factors. The familial nature of most diseases suggests an underlying genetic susceptibility, but environmental, stochastic and epigenetic factors are also critical. Additional genetic hallmarks of complex disorders are that the underlying mutations are neither necessary nor sufficient for the development of disease, and that these mutations are common in the general population. Contemporary genomic methods and perspectives, using the human genomic sequence, comparative sequence from many other vertebrates, a genome-wide map of polymorphic sites (The International HapMap Project) are all critical elements of this genetic dissection. In particular, we are developing a paradigm for the genetics of common mutations.